YidC and Oxa1 form dimeric insertion pores on the translating ribosome.
نویسندگان
چکیده
The YidC/Oxa1/Alb3 family of membrane proteins facilitates the insertion and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here we present the structures of both Escherichia coli YidC and Saccharomyces cerevisiae Oxa1 bound to E. coli ribosome nascent chain complexes determined by cryo-electron microscopy. Dimers of YidC and Oxa1 are localized above the exit of the ribosomal tunnel. Crosslinking experiments show that the ribosome specifically stabilizes the dimeric state. Functionally important and conserved transmembrane helices of YidC and Oxa1 were localized at the dimer interface by cysteine crosslinking. Both Oxa1 and YidC dimers contact the ribosome at ribosomal protein L23 and conserved rRNA helices 59 and 24, similarly to what was observed for the nonhomologous SecYEG translocon. We suggest that dimers of the YidC and Oxa1 proteins form insertion pores and share a common overall architecture with the SecY monomer.
منابع مشابه
Elucidating the native architecture of the YidC: ribosome complex.
Membrane protein biogenesis in bacteria occurs via dedicated molecular systems SecYEG and YidC that function independently and in cooperation. YidC belongs to the universally conserved Oxa1/Alb3/YidC family of membrane insertases and is believed to associate with translating ribosomes at the membrane surface. Here, we have examined the architecture of the YidC:ribosome complex formed upon YidC-...
متن کاملEvolution of mitochondrial oxa proteins from bacterial YidC. Inherited and acquired functions of a conserved protein insertion machinery.
Members of the Oxa1/YidC family are involved in the biogenesis of membrane proteins. In bacteria, YidC catalyzes the insertion and assembly of proteins of the inner membrane. Mitochondria of animals, fungi, and plants harbor two distant homologues of YidC, Oxa1 and Cox18/Oxa2. Oxa1 plays a pivotal role in the integration of mitochondrial translation products into the inner membrane of mitochond...
متن کاملRole of the Cytosolic Loop C2 and the C Terminus of YidC in Ribosome Binding and Insertion Activity.
Members of the YidC/Oxa1/Alb3 protein family mediate membrane protein insertion, and this process is initiated by the assembly of YidC·ribosome nascent chain complexes at the inner leaflet of the lipid bilayer. The positively charged C terminus of Escherichia coli YidC plays a significant role in ribosome binding but is not the sole determinant because deletion does not completely abrogate ribo...
متن کاملThe Sec-independent function of Escherichia coli YidC is evolutionary-conserved and essential.
YidC plays a role in the integration and assembly of many (if not all) Escherichia coli inner membrane proteins. Strikingly, YidC operates in two distinct pathways: one associated with the Sec translocon that also mediates protein translocation across the inner membrane and one independent from the Sec translocon. YidC is homologous to Alb3 and Oxa1 that function in the integration of proteins ...
متن کاملA structural model of the active ribosome-bound membrane protein insertase YidC
The integration of most membrane proteins into the cytoplasmic membrane of bacteria occurs co-translationally. The universally conserved YidC protein mediates this process either individually as a membrane protein insertase, or in concert with the SecY complex. Here, we present a structural model of YidC based on evolutionary co-variation analysis, lipid-versus-protein-exposure and molecular dy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2009